Proof calculus for total correctness

In the preceding section, we developed a calculus for proving partial correct-
ness of triples (@) P (¢). In that setting, proofs come with a disclaimer: only
if the program P terminates an execution does a proof of l'pa,QO[) P ﬂc'[) tell
us anything about that execution. Partial correctness does not tell us any-
thing if P ‘loops’ indefinitely. In this section, we extend our proof calculus
for partial correctness so that it also proves that programs terminate. In the
previous section, we already pointed out that only the syntactic construct
while B {C'} could be responsible for non-termination.

A proof of total correctness for a while-statement will consist of two parts: the proof of partial
correctness and a proof that the given while-statement terminates. Usually, it is a good idea to
prove partial correctness first since this often provides helpful insights for a termination proof.

The proof of termination usually has the following form. We identify an integer expression whose
value can be shown to decrease every time we execute the body of the while-statement in question,
but which is always non-negative. If we can find an expression with these properties, it follows
that the while-statement must terminate; because the expression can only be decremented a finite
number of times before it becomes 0. That is because there is only a finite number of integer values
between 0 and the initial value of the expression.

We can codify this intuition in the following rule for total correctness which replaces the rule for
the while statement:

(nABADSE=E)C(gh0<E < Ey)
(n A0 < E)while B {C}(n A -B)

Total-while.

In this rule, E is the expression whose value decreases with each execution of the body C. This is
coded by saying that, if its value equals that of the logical variable EO before the execution of C,
then it is strictly less than EO after it — yet still it remains non-negative. As before, 1 is the invariant.
We use the rule Total-while in tableaux similarly to how we use Partial while, but note that the
body of the rule C must now be shown to satisfy

|1Fj ANEBAD < E= E[]} f..“ﬂlf A = E = Er:.tl.

When we push n A 0 < E < E|, upwards through the body, we have to prove
that what emerges from the top is implied by n ABA0 < E = Ej: and
the weakest precondition for the entire while-statement, which gets writ-
ten above that while-statement. is n A (0 < E.



